藏书吧 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!
藏书吧 >  离语 >   第300章 丸辣

文本挖掘与分析名词解释10道题,英文缩写,例如RNN,LdA,mLp,FNN模型和算法的理解(word2vec等模型原理),损失函数,语言模型的概念,代码类:根据公式\/输出写源代码交叉熵损失设置参数解决数据不平衡1自然语言处理自然语言处理研究实现人与计算机之间用自然语言进行有效通信的各种理论和方法。自然语言处理技 术发展经历了基于规则的方法、基于统计学习的方法和基于深度学习的方法三个阶段。自然语言处理 由浅入深的四个层面分别是形式、语义、推理和语用,当前正处于由语义向推理的发展阶段。2文本分类文本分类是机器对文本按照一定的分类体系自动标注类别的过程, 也是自然语言处理最早的应用领域之一。你能想到哪些自动文本分类 应用? 垃圾邮件分类,新闻类型分类,...情感分析情感分析也可以认为是文本分类的一个子类型。情感分析往往应 用于电商的用户评价分析,微博等自媒体的用户留言倾向分析,或者 公共事件的舆情分析。3信息抽取信息抽取是采用机器学习算法从非结构化文本中自动抽取出用户感兴趣的内容,并进 行 结构化处理。例如命名实体识别、实体关系抽取、事件抽取、因果关系抽取文本生成包括自动文章撰写、自动摘要生成等内容4信息检索信息检索指信息按一定的方式组织起来,并根据用户的需要找出有关的信息的过程和技术。搜 索引擎是当前主流的信息检索方式,从最初的关键词匹配算法到如今的语义检索技术, 用户已经能够随心所欲的检索自 己所需的信息。

中心度:在图论和网络分析中,中心度用来衡量节点在图中的重要 性,中心度并不是节点本身带有的属性,而是一种结构属性, 是在图或网络结构下节点才具有的属性。中心度可用来解决不同领域的问题: 例如在社交网络中寻找影响力最大的用户,在互联网或城市网络中寻找 关键的基础设施,以及在疾病网络中发现超级传播者度中心度:指节点与其他节点相连边的数量,即通过节点的邻居 数目(局部信息)来计算节点度重要程度。 基本思想:节点与网络中其他节点的交互都是通过其邻居节点来 进行的,因此节点的邻居越多,意味着该节点能够 向外传递的信息越多,从网络外部接受信息也越容易。 有向网络中,又可以定义出度中心度、入度中心度。

社区发现是根据网络中的边的连接模式,把网络顶点划分为群组。将网络顶点划分为群组后最常见的属性是,同一群组内部的顶点之间紧密连 接,而不同群组之间只有少数边连接。社团发现的目的是就要找到网络内部不同群组之间的自然分割线。简而言之,它是一个把网络自然划分为顶点群组的问题,从而使得群组内有 许多边,而群组之间几乎没有边。然而,“许多”和“几乎没有”到底是多少, 这个问题值得商榷,为此提出了多种不同的定义,从而产生了不同的社团发 现算法8基于层次聚类的算法。

第一阶段:称为modularity optimization,主要是将每个节点划 分到与其邻接的节点所在的社区中,以使得模块度的 值不断变大; 第二阶段:称为munity Aggregation,主要是将第一步划分 出来的社区聚合成为一个点,即根据上一步生成的社 区结构重新构造网络。重复以上的过程,直到网络中 的结构不再改变为止。步骤:1.初始化,将每个点划分在不同的社区中; 2.对每个节点,将每个点尝试划分到与其邻接的点所在的社区中,计算此时 的模块度,判断划分前后的模块度的差值Δq是否为正数,若为正数, 则接受本次的划分,若不为正数,则放弃本次的划分; 3.重复以上的过程,直到不能再增大模块度为止; 4.构造新图,新图中的每个点代表的是步骤3中划出来的每个社区,继续执 行步骤2和步骤3,直到社区的结构不再改变为止。 !在2中计算节点的顺序对模块度的计算是没有影响的,而是对计算时间有影响。

数据缺失的原因数据采集过程可能会造成数据缺失;数据通过网络等渠道进行传输时也可能出现数据丢失或出错,从而造成 数据缺失;在数据整合过程中也可能引入缺失值删除法删除法通过删除包含缺失值的数据,来得到一个完整的数据子集. 数据的 删除既可以从样本的角度进行,也可以从特征的角度进行。 删除特征:当某个特征缺失值较多,且该特征对数据分析的目标影响 不大时, 可以将该特征删除 删除样本:删除存在数据缺失的样本。 该方法适合某些样本有多个特征存在缺失值,且存在缺失值的样本占 整个数据集样本数量的比例不高的情形 缺点:它以减少数据来换取信息的完整,丢失了大量隐藏在这些被删除数据 中的信息;在一些实际场景下数据的采集成本高且缺失值无法避免,删除法可 能会造成大量的资源浪费均值填补计算该特征中非缺失值的平均值(数值型特征)或众数(非数值型特 征),然后使用平均值或众数来代替缺失值缺点一:均值填补法会使得数据过分集中在平均值或众数上,导致特征 的方差被低估 缺点二:由于完全忽略特征之间的相关性,均值填补法会大大弱化特征 之间的相关性随机填补随机填补是在均值填补的基础上加上随机项,通过增加缺失值的随机性 来改善缺失值分布过于集中的缺陷。

等距离散化(Equal-width discretization):将数据划分为等宽间隔的区间,这种方法需要先确定区间的个数n,再根据最小值min和最大值max计算出每个区间的间隔长度(max-min)\/n,相邻两个区间的宽度都是相同的。等频率离散化(Equal-Frequency discretization):将数据划分为相同的数量级别,每个区间包含的记录数相等。这种方法首先将数据按照大小排序,然后将排序后的数据分成n等份,每份个数为数据总数\/n,在每个区间的边界处划分数据。基于聚类的离散化:将数据分成若干个簇,簇内的数据相似度高,簇间数据相似度低。具体实现时可以使用聚类算法如k-means、dbScAN等。自适应离散化:通过迭代的方式,不断根据数据的特性调整区间的边界,以达到最优的离散化效果。下面分别以等距离散化、等频率离散化、基于聚类的离散化和自适应离散化为例子,分别列出具体的例题:等距离散化假设我们有一个包含1000个学生身高数据的数据集,我们想将身高离散化成10个等宽的区间,以下是离散化方法:计算身高的最小值和最大值,假设最小值为140cm,最大值为200cm。计算每个区间的宽度,假设共10个区间,每个区间的宽度为(200-140)\/10 = 6cm。根据每个学生的身高,将其分入相应的区间。等频率离散化假设我们有一个包含200家公司的财务数据的数据集,我们想将每个公司的营业收入离散化成5个等频率的区间,以下是离散化方法:将所有公司的营业收入升序排序。计算每个区间的数据数量,在本例中,因为共有200个公司,所以每个区间包含40个公司。找到每个区间的边界,比如第一个区间的最小值和第二个区间的最大值,这两个值之间的所有公司的营业收入都属于第一个区间。

藏书吧推荐阅读:极乐合欢功盗墓:当吴小佛爷开始玩养成重生后娘娘宠冠后宫让你援助抗战,你成列强了?我捡来的小奶狗竟然是顶头上司恶性相依穿书救闺蜜,病娇夫君天天争宠如不成魔,怎去成仙蚕神商贾之女咋啦?小小世子照样拿捏反派弟子全舔狗?摆烂师尊浪浪浪综漫:无敌从加入轮回空间开始貌美继室摆烂后,禁欲权臣他慌了寻回的璀璨人生穿书七十年代:开局多一个老公王妃葬身火海,渣男王爷哭疯了时来允转梦境里我为主宰我有位面快穿系统,反手上交国家快穿之宠妃上位记武力值爆表!清冷美人是满级大佬被卖后,她只想苟在一亩三分地上穿越从一拳开始快穿:手撕渣男主,被男配宠上天闺蜜双穿!我们真的只是朋友!明天的明天是今天逃荒:有粮有钱心不慌奥特,我贝利亚只想咸鱼重生之不被书写的人生霍格沃茨的冒牌巫师校花曝光我在殡仪馆抓鬼现场四合院:万倍经验暴击,众禽慌了傲剑狂魔末世重生,开局打造顶级安全屋抗战:鬼子太太不想丈夫丢工作0幻梦0影踪0行异界大小姐重生,通通闪开!网王:从签到开始的网球传奇快穿带娃:开局精神控制躺赢末世快穿:苦逼钓鱼佬在年代文还债我靠捉鬼发家致富跟男主的病弱小叔互换身体后70闪婚军官后,国家给我做靠山一本随记本民俗诡事簿炮灰不走剧情,主角死活随便穿越农家种田遇上王爷美丽的圌山传穿成兽世娇雌,大佬们每天都在修罗场灵异悬疑小说集
藏书吧搜藏榜:野玫瑰欲又撩,太子爷失控诱捕我爹哪去了菟丝绕红缨玄学直播捉鬼忙,看看今晚谁塌房两只虫崽在垃圾星的日常生活乖乖的,不许逃没错,我的卡牌是辛弃疾怎么了我一个小刑警,你让我当鬼差帝少动情,顾大小姐三年抱俩离婚后她空降热搜末世:探寻龙头脉无限:开局成为海虎之弟南宫轩与上官洛儿倾城之恋爷,您夫人又管不住了月华倾心遮天之阴阳道以前上班的不成功日记人在斗罗,开局觉醒时间零美女天才中医与黏人总裁综穿:捣乱从甄嬛传开始恋综爆火后,哥哥他坐不住了海贼里的龙珠模拟器平安修行记蚀骨情深,顾总他上头了四合院:精神病面前禽兽算个球斗罗:佛道双魂,我玩转诸天横空出世的娇帝君火葬场女工日记骑行异事重生端木,我不吃牛肉我,赤犬大将,开局轰杀逃兵王废物公子神豪富婆,这点小钱洒洒水啦姐弟恋:好想和你一起长大女孩子会喜欢逗比的吧?不是吗?唉!又是一天把亲爹气的直跺脚!时不时吐血的我在柯南身边怎么活锦鲤四岁半捡的妹妹超旺家七零军婚:重生后被兵哥哥盯上了如意茶馆叶罗丽之重生归来,我依旧爱你当我在火影成为空律洪荒:我袁洪一心求稳,人间清醒带着抽卡系统穿综漫完了!订婚前夜禁欲战神闯我闺房女配给大反派生孩子后,男主疯了最后的任务,许我为妻我重生成为了曙光圣者崩坏:成为梅比乌斯的妹妹明月揽星辰
藏书吧最新小说:诸天:小玉你还小,别追了被害投湖,嫡女归来怒掀渣男龙椅叶老师又娇又撩,科技大佬婚后夜夜求名分太古无双神尊四合院谁都不要和我抢养老被甩后,我医武双绝,你求复合做什么?灵武苍天重生假少爷,从打猎带妻女发家开始穿成农家秀才的作精娘子修己心:如何做这个世界的旁观者小夫人会玄学,携崽炸翻豪门重生1993:我权势滔天废柴美女修仙记老婆打遍诸天万界,我无敌了噶我腰子?我靠氪金电子女友杀穿缅北互换婚书你提的,朕登九五你哭啥?王爷不近女色,我却孕吐三年新美人鱼传说娇软雌性万人迷,兽世老公宠宠宠民国奇探之路垚是我嫂子惯坏她茅山嘉乐之除魔卫道我对疯批男主手拿把掐那些年穿到七年后,和死对头结婚生崽了来世之后的复仇不装了!神医归来,前妻哭着求复合三岁福宝有空间,全家一起宠翻天和亲归来后,全城为我哭坟不许我摆烂,那我就杀穿崩铁:云骑小姐与普通的我魂穿孤女后,夫君成都督豆角和豆包致命偏宠,顾少步步诱哄首长你的洋媳妇儿来了,签收一下成婚当日我改嫁未来权臣!悦己者极乐永恒天老李沟的故事病弱美人靠着与摄政王亲嘴续命装娇弱扮深情,清冷权臣拿命宠规则:开局出现在神秘列车让你下山娶妻,你却无敌天下惊!嗜血将军夜夜在我怀里装乖巧最牛重生,人生回档在牙牙学语四合院:开局植物人,送大爷进局重生后,皇帝为我痛哭流涕禁欲霸总的契约婚姻叶小子修仙记三年不回,我穿七零退亲你又追来穿越红楼之寡妇李纨