藏书吧 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!

写下标题和引言后,徐川开始步入正文。

“.....引用潘荣华与张伟哲两位教授的‘热导率的可压缩okes方程论文’,在此基础上对将初值条件进行放宽。”

【新章节更新迟缓的问题,在能换源的app上终于有了解决之道,这里下载 huanyuanapp.org 换源app, 同时查看本书在多个站点的最新章节。】

“则(v?,u?,θ?)(x)∈h1*h2*h2变为(v?,θ?)∈h1?(0,1),uo∈h1?(0,1)......”

“存在一些正常数?>0,使得对于任何(x,t)∈(0,1)(0,∞)。”

“可得cˉ1≤u(x,t)≤c,cˉ1≤θ(x,t≤c),及||(u-∫1?u?dx,u,θ-∫1?u?dx)(·,t)||h1(0,1)≤t.......”

........

书房中,徐川开始了对ns方程的探索。

这是一个横跨了三个世纪的难题,要解决它,难度超乎想象。

从圣维南与斯托克斯在1845年独立提出粘性系数为一常数的形式方程,并命名为okes方程后,两个世纪以来研究它的数学家和物理学家繁多如过江之鲫。

然而在上面取得重大突破的,却寥寥无几屈指可数。

目前的数学界,在ns方程上的最大进度,还是他在普林斯顿的时候和费弗曼一起推进的阶段性成果。

做到了能在在曲面空间中,给定一个初始条件和边界条件,确定解的存在。

而现在,徐川要将其更进一步的推进,做到是给予一个有限界域与具有dirichlet边界的条件,在三维空间中,okes方程存在实解,且解光滑。

如果能做到这一步,差不多就能够给可控核聚变反应堆腔室中的等离子体湍流建立一个数学模型并利用超级计算机进行控制运算了。

对于徐川来说,他目前并不期盼解决ns方程什么的,那并不是什么靠谱的好主意。

ns方程从提出到现在已经近两百年了,它依旧如一座看不到尽头的高峰般巍然屹立。

无数的登山者甚至连山脚都没有接近,人们看不到它的山顶,只能远远的隔着迷雾眺望一眼。

徐川也不敢说自己有生之年就能完成ns方程的求解。

不仅仅是因为它难,更是因为它是一个庞大的系统性工程。

克雷研究所定义的‘三维空间中的n-s方程组光滑解的存在性问题’只不过是ns方程的前奏而已。

......

别墅中,徐川已经有超过一周的时间没有出门了。

他对ns方程的推进在一开始还算顺利,偏微分方程本就是他上辈子的研究领域之一,再加上这辈子将数学作为主修的领域,在这一块,他已经成功超越了上辈子走出去了更远的距离。

但这并不能让他在ns方程上一帆风顺的走下去,在两天前,他陷入了一个瓶颈中,目前依旧还在寻找办法解决这个难题。

书房中,徐川皱着眉头盯着稿纸上的算式。

“u``=-(1\/v)(1-cosa)u。”

这是一个很简单的公式,是以函数为系数的谐波方程,是从陈至达的变形张量s+r分解理论对于零压力梯度的壁面流动,得到速度剖面u(y)理论方程中形变而来的。

由这个方程可得,随着壁面距离的增大,湍流的尺度是从超高波数的微小尺度演化为趋于零波数的超大尺度。

在一般情况下,它几乎可以代替欧拉方程适用于所有的湍流,得到普遍有效的方程组。

此外,对于这个方程,已经证实的是,普朗特的对数律速度就是方程的理论解。

因此,可以认为:对于理想的壁面流动,理论解与实验解是吻合的。

简单的来说,就是在理想情况下,通过数学公式计算出来的湍流运行状态与实际运行是一模一样的。

能做到这个,就完全可以用来建立数学模型,实现对湍流的预判和控制。

但是,它有一个致命的问题!

那就是湍流区域是cosa从不能近似为1演化到接近于0的区域的,且普遍有效的解析解是难于得到的。

这对于形状怪异的可控核聚变反应堆腔室来说,是最为致命的点。

徐川想找到一个可以补足或者代替的方法,但至今未能做到。

更关键的是,数学上,严格的加速度公式是用李导数来证明的。

因此,用s+r导出的微元体加速度与李导数虽然在本质上一致,但是在力学(物理)解释上区别很大。

而目前科学界普遍接受的是基于李导数的欧拉方程,或是ns方程。

因此,对于这里给出的壁面流方程以及湍流的普遍方程,在理论界几乎没有支持性文献。

也就是说,徐川想要查阅借鉴一下以前的文献论文都做不到。

这是一个几乎全面空白的领域。

.......

书房中,将手中的稿纸揉成一团抛到一边的垃圾桶中后,徐川盯着崭新的a4纸长舒了一口气。

自从推导进入瓶颈后,他被困在这个问题上差不多已经十来天了,但一无所获。

当然,也不能完全这样说,至少这十来天他排除掉了多种不能用的方法。

摇了摇头,刚准备继续下笔,但想了想后,他又将手中的笔丢到了一边。

抬头仰望着天花板看了一会,徐川推开了椅子站了起来。

或许,他需要一点小小的帮助。

他想到了上辈子解决杨-米尔斯规范场存在性和质量间隔假设难题的经历。

那时候也和这次一样,被一个瓶颈限制了很长的时间。

而ns方程和杨-米尔斯规范场存在性和质量间隔假设一样,两者都并不单单是数学上的难题,它们同时也是物理上的难题。

或许,他能从物理上的角度,来想想办法。

抛开数学思维,从物理上来说,要想研究一个问题,最快的方法就是实践了。

湍流无处不在,它存在于高速行驶的飞机尾流之中,也存在于装满水的浴缸里。

它的精髓在于通过漩涡的形成、相互作用和消亡,将能量从最大尺度注入到最小尺度。

简单说来,就是有序的流体流动会形成一个个的漩涡,这些漩涡会相互作用,分裂成更小的漩涡,然后更小的漩涡继续相互作用,如此等等……

但是,这种混沌却已经困扰了科学家们好几个世纪。

目前还没有一个机械论框架可以解析漩涡之间的相互作用是如何驱动这样一种能量级联的。

而对于物理学家来说,面对一个困难的问题,有一种物理学家们常会采用的解决方法!

那就是将这些事物放到一起彻底“击碎”!

比如为了理解宇宙的基本组成部分,理论物理学家们修建起来了大型强粒子对撞机,将微观粒子加速然后让它们发生碰撞,从而获取到数据。

这一次,为了揭示湍流的基本机制,找到解决ns方程的办法,徐川决定让漩涡与漩涡发生碰撞,亲眼去从微观层面上看看它的结构与运动。

......

南大,徐川直奔物理学院,找到了物院的院长俞永望,提出了想借物院设备使用的请求。

对于徐川的请求,这位俞院长想都没想就直接答应了下来。

物理实验大楼中,徐川喊来了自己的两名学生,让他们帮忙打个下手。南大那边在俞永望的安排下来,也喊来了两名博士生帮忙。

其实制造湍流碰撞并不是一件什么难事。

各种海洋生物都可以在水下用空气和快速移动的水制造涡流环。

这是因为当圆形的气泡向前运动时,会受到正面水的挤压力以及侧面向后的水面摩擦力,这就导致原本圆形的气泡会被压扁,而边缘由于受到向后的力,则会扰动边缘的空气进行旋转,从而形成边缘的涡流,渐渐的中间被分开,就形成了涡环。

实验的难点在于使用超高分辨率摄像机全程记录两个湍流的碰撞,然后利用3d可视化程序对碰撞过程进行了重建,确定湍流演化的基本机制。

“教授,我这边已经调节好了,a1涡环使用了绿色材料,a2涡环使用了红色材料。”

实验室中,谷炳大声的汇报完成自己手中的工作。

徐川点了点头,道:“好的。”

而另一边,在摄影测量与遥感专业的学生帮助下,阿米莉亚也很顺利的完成了超高分辨率摄像机的架设与调试。

“报告教授,超高分辨率摄像机准备完毕,随时可以进行记录。”

........

在徐川的指挥和南大的帮助下,用于涡环对撞实验的设备很快就完成了组装。

实验开启,在精准的控制下,位于水箱两侧的涡环制造仪同时向前发射出了一个气泡,在高速运动下,气泡演变成涡环,随即在正中心碰撞在一起。

红黄的涡环在对撞的瞬间就形成了肉眼可见的混色波纹与环,但仅仅是一秒钟的时间,这些波纹与环就消散在一片染料之中。

不过对于徐川来说,这已经足够了。

在这次的实验室中,徐川特意找来了一个强大的扫描激光片,同步在高速摄像机上,两者结合,可以让它每秒可以捕捉数十万张图像。

而超高分辨率的高速摄像机精准的将整个实验过程全都记录了下来,并且输送到了计算机中。

剩下的,就是利用3d可视化程序对碰撞过程进行了重建了。

.......

“教授,这次的实验做完了?”

实验室中,阿米莉亚好奇的看着正在拆卸设备的同学,朝着徐川问道。

徐川点了点头,道:“嗯,已经做完了。”

“我能问问这是在研究什么吗?涡流?还是湍流?”

被匆忙的喊过来,阿米莉亚和谷炳都有些好奇自己的导师消失了大半个月都在做些什么。

徐川笑了笑,回道:“研究ns方程。”

阿米莉亚张着嘴,有些惊讶的看了眼徐川又看了眼正在拆卸的设备:“就用这个?”

徐川笑着说道:“当然,ns方程本就是研究流体力学的,涡流也是流体力学中的一部分。”

事实上,自上世纪90年代以来,物理学家就开始使用涡旋对撞机来研究湍流,但之前的那些实验都未能在碰撞发生时,对产生混沌的那一刻进行慢放和力学重建。

徐川之所以会这么做,也是因为重生带来的经验。

在后世的空气动力学中,系统系的重建混沌体系进行研究是一件很常见的事情,因此他顺手就给加上了。

“那教授,我能加入你的研究吗?”阿米莉亚期待的问道。

她大学学的就是数学物理,对于ns方程同样相当感兴趣,加入徐川的研究,即便是帮不上什么忙,也肯定能学到很多的东西。

一旁,谷炳也投来了期盼的目光。

注意到两个学生的渴望,徐川笑了笑,道:“你们还是先好好完成我之前交给你们的任务吧。”

倒不是他不愿意两名学生参与自己的课题,但他们应该没有足够的精力和时间。

去年他没怎么带学生,今年就不同了,开年的时候更是亲自部署了一个类霍奇数学难题交给了他们。

这一个难题,估摸着就能消耗掉他们日常的所有时间了。

若是能解决,他们离毕业也就不远了。

......

折腾了几天的时间,对涡流碰撞的3d可视化重建终于完成了。

南大第一时间就将重建后的数据发了过来。

收到数据后,徐川泡了被清茶,打开了电脑。

自从之前在邱成桐哪里通过茶雾得到灵感后,他现在也开始了泡茶喝茶,希望能继续从上面得到灵感和思路。

虽然这并没有什么用,但徐川意外的发现,喝茶能让他在日常的研究中保持一定的专注度,因此也开始习惯在搞研究前泡上一杯清茶了。

端着茶杯,他小啜了一口后打开了重建后的涡环对撞实验。

这是和目视完全不同的画面,重建后的对撞,涡环的颜色完全消失或者说统一了。

但徐川敏锐的注意到,当涡环相互碰撞时,它们会被向外拉伸,其边缘会形成反对称的波。

这些波的波峰会发展成像手指一样的丝状物,沿着垂直于碰撞发生的核心生长。

而后,这些“手指”的旋转方向与相邻“手指”相反,于是形成一个新的微型漩涡阵列,这种微型漩涡之间的相互作用会持续几毫秒。

如果不是极度的慢放,可以说很难发现这些。

但它也给徐川带来了一种模湖的灵感。

鼠标轻轻的点击,他将画面拉到了最开始,重新播放。

当新的漩涡阵列与波纹形成时,徐川的眼神也愈发明亮了起来,但明亮的眼神中依旧掺杂着一丝疑惑。

他总感觉这些东西在数学上给他一种莫名的熟悉感,却又一时半会的想不起来是在哪里见过。

鼠标再度拉回进度,他一遍又一遍的观看着眼前的视频。

忽的,在脑海中,一张稿纸在他脑海中浮现,让他的眼神骤明亮了起来!

他想起来自己在哪里见过这熟悉的东西了,也知道该如何进行推进ns方程了!

........

ps:昨天的月票加更,说到做到,再来点的月票呗,亲们,还差三百来张月票到两千,\\( ̄︶ ̄*\\)),让八尾下个月抽次奖吧!

藏书吧推荐阅读:向诸天散播黄灯的恐惧万人迷向导:S级哨兵们的菟丝花在日本当学神的日子天上掉下个科技狂英雄联盟之凌驾一切关于我退休终焉下岗再就业这档事苏醒的她选择旁观绝代武神末世天师的位面交易系统奶龙与贝利亚:宇宙之中的欢笑末世:组队就变强我统领万千女神战斗少女:我的女孩们强得离谱穿书成为路人N全球神只时代囤货勿扰,娇软美人在末世赢麻了末日黎歌末日,绿茶前女友跪求我收留玩家!文明重铸者!古穿未之星际宠婚末日从全球冰封开始末世桃源,养生系神豪红夜危机,异变后世界国之重器无限之开局一双轮回眼开局完虐四个丧尸病友恐怖都市内四合院:刀劈易中海,院里谁不服身为诡异的我总想伪装成人幻想世界大穿越快穿之病娇男神有毒吞噬星空海贼:玛丽乔亚也没写禁止钓鱼啊餐馆通万界?我赚十个亿很合理吧宇宙职业选手游历影视万界漫威,谁把他救出来的?!反派他迷人又危险星际田园梦秩序乐园,我无限加点你好,人类!【第一篇】污染游戏星际之有间杂货铺两界搬运整个末世都是我的后花园哪个系统让他来灾厄求生的?只想退休的我被迫成了大将我是个假外星人极寒末世:神之禁区上海滩:从炮轰租借开始崛起星际战争领主在赛博世界当星际佣兵
藏书吧搜藏榜:诡神冢生活达人在末世末世灾变,我能合成进化剂丧尸正太末世小饭馆末日战帝网游之剑震天下开局一块板,苟成华夏之光时空行走者穿书后,我成了修真人士星际之鬼眼萌妻诸天从西游开始星际内卷王快穿之攻略的反派都崩人设了邪气宿主总掉线星际直播万人迷,帝国大佬争着宠我在克系世界死亡回档星海天启:直面终结无限加班欢迎加入交换游戏绝世宠物重生末世有空间星火仙帝快穿之我家宿主又碰瓷了我正在穿书填坑中快穿之厉害了我的宿主费米悖论之双月入侵给反派戴上圣父光环明灭之间元始强者勇闯三国丧尸世界之生存日记懒唐神奇宝贝之决战白银之巅系统:我在末世种玉米嫁七零糙汉后,我双胞胎体质藏不住三万年以后宿主她是撩人精末日重生之爱上你超时空战争要塞百宝农庄卡牌风暴末世:多子多福,从顶级女星开始超级蛋蛋闯进太阳系的阿波斯半仙文明末世重生一块砖海贼:最强副船长,领悟任何果实核平诸天万界末世大狙霸红警的黑科技帝国
藏书吧最新小说:末日,开局与杨迷热芭组队求生:我的避难所荷尔蒙爆棚了万物播种进化重生回到末世前,物资报仇搞起来全民末日:女神?都是我的资源!行尸危机末日:谁说我是反派?我是枭雄!上班族的末日超能力每天的生辰花伪人入侵,从收留邻家太太开始异世界三兄弟末日重生之超能力争夺有人违规招生,谁来管一管啊?出狱你分手,我能往返末世你哭啥寒世重生:空间异能的黑化逆袭高中的我,参与群神会议轮回求生,开局领取校花女友!废土生存密码末世降临废土求生末世黑暗救世主寿元抽奖求生?哥刀刀都爆幸运值人在末日:我能从游戏里拿物资每天一种无限物资,极品女神倒贴天机谱之九霄玄歌快穿:回收金手指从种田开始在诡异世界扫垃圾暴富全民载具生存,我能无限合成物品科技霸主小雌性超香软,开局治愈五大恶兽机娘纪元:曙光铁骑三天一进化,我的吞噬天赋太BUG了我创造了异常控制局废土:杀戮成神万界融合:我能调控爆率宿主太野,主角配角全沦陷末世重生,我有三十六种异能末世女杀神末世:开局契约雷狱魔龙这个疯子来自地球全民求生:女神求着进我家干苦力末日降临:绝对爆率,击杀必掉物资星辰大海海岛求生:从强化垂钓开始末世求生:打丧尸能掉盲盒?重生末日,我靠系统卷疯了末日:人族崛起飞车求生:开局和前女友母亲一起极寒末日,开局亿万物资囤女神末日最强包租婆,我靠抽盲盒躺赢末世重生,我以暴杀丧尸开始氪命无敌